Stochastic evolution equations with a spatially homogeneous Wiener process
نویسندگان
چکیده
منابع مشابه
Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملStochastic Volterra equations driven by cylindrical Wiener process
In this paper, stochastic Volterra equations driven by cylindrical and genuine Wiener process in Hilbert space are investigated. Sufficient conditions for existence of strong solutions are given. The key role is played by convergence of α-times resolvent families.
متن کاملStochastic Differential Equations: a Wiener Chaos Approach
A new method is described for constructing a generalized solution for stochastic differential equations. The method is based on the Cameron-Martin version of the Wiener Chaos expansion and provides a unified framework for the study of ordinary and partial differential equations driven by finiteor infinite-dimensional noise with either adapted or anticipating input. Existence, uniqueness, regula...
متن کاملOn time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملQuasistatic Evolution for Plasticity with Softening: the Spatially Homogeneous Case
The spatially uniform case of the problem of quasistatic evolution in small strain associative elastoplasticity with softening is studied. Through the introdution of a viscous approximation, the problem reduces to determine the limit behaviour of the solutions of a singularly perturbed system of ODE’s in a finite dimensional Banach space. We see that the limit dynamics presents, for a generic c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 1997
ISSN: 0304-4149
DOI: 10.1016/s0304-4149(97)00089-6